A semi-automatic pipeline for transcribing and segmenting child speech

¹Polychronia Christodoulidou, ²James Tanner, ²Jane Stuart-Smith, ³Michael McAuliffe ⁴Mridhula Murali, ⁴Amy Smith, ⁴Lauren Taylor, ⁴Joanne Cleland, ⁴Anja Kuschmann

¹Aristotle University of Thessaloniki, Greece; ²University of Glasgow, UK

³McGill University; ⁴University of Strathclyde, UK

The problem

Getting reliable acoustic phonetic measures from (lots of) child speech is challenging^[1,2,3,4]

- child speech is highly variable^[1,5,6]
- speech style and spoken variety^[2,3]
- extremely time consuming to prepare child speech recordings for analysis^[3,7]

automated transcription — manual adjustment

- forced alignment manual check
- > strong performance from WhisperX > adjusting WhisperX output improves quality
- > adapting MFA model improves quality
- > far less manual input (= time!) to achieve robust acoustic measures


VARICS: large child speech reference corpus

- 275 children
- 227 typically-developing children
- age: 5;0 11; 9
- gender: 124 male, 150 female, 1NB
- 23 schools, 7 councils in Scotland, UK

May – November 2023

November – **June 2024**

May – November 2024 November – **June 2025**

Data collection

- DEAP screening task
- 2 non-speech tasks
- 3 connected speech tasks
- single word naming task (3x) CVC /ie ιε a λ o u/
- bespoke iPad app
- Shure SM35 mic/Zoom-U22 interface

Method

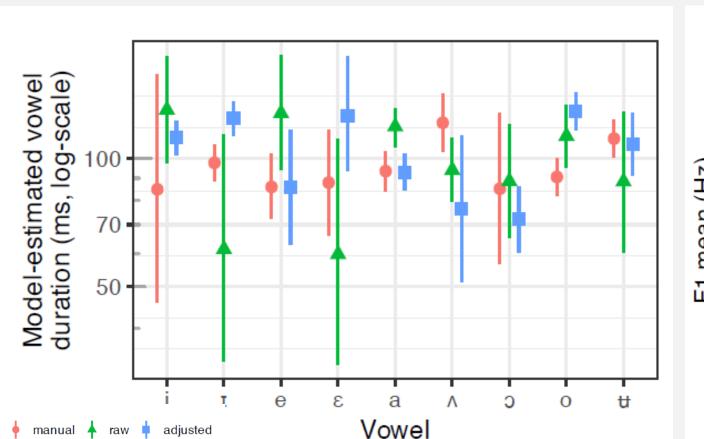
- 783 recordings / ~13 hours / 273 children
- WhisperX^[13] model small, language English
- team of phonetically-trained student assistants
- Python conversion script Whisper2textgrid.py
- Montreal Force Aligner^[17] english_us_arpa
- > acoustic vowel measures (F1, F2, duration) in *Praat* from MFA / manual boundaries

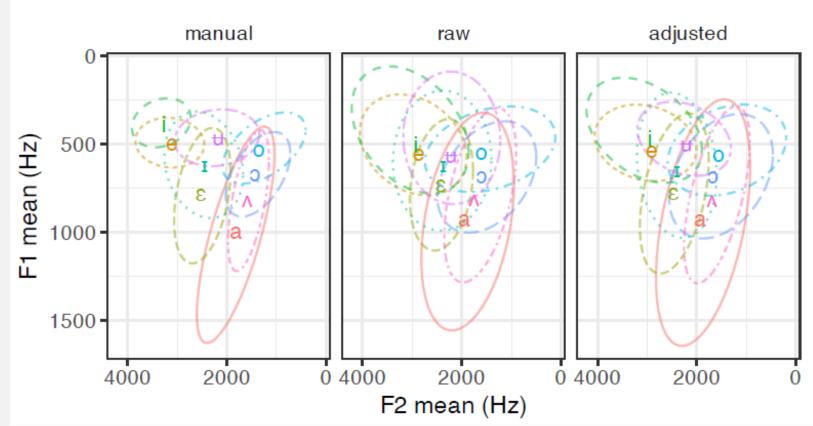
Stage 2: adapting MFA acoustic models

• used mfa_adapt^[26] to make three new acoustic models from MFA english_us_arpa (arpa)

adapt22: 64 recordings / 3695 sec / 22 children

adapt218: 654 recordings / ~ 11 hours / 218 children

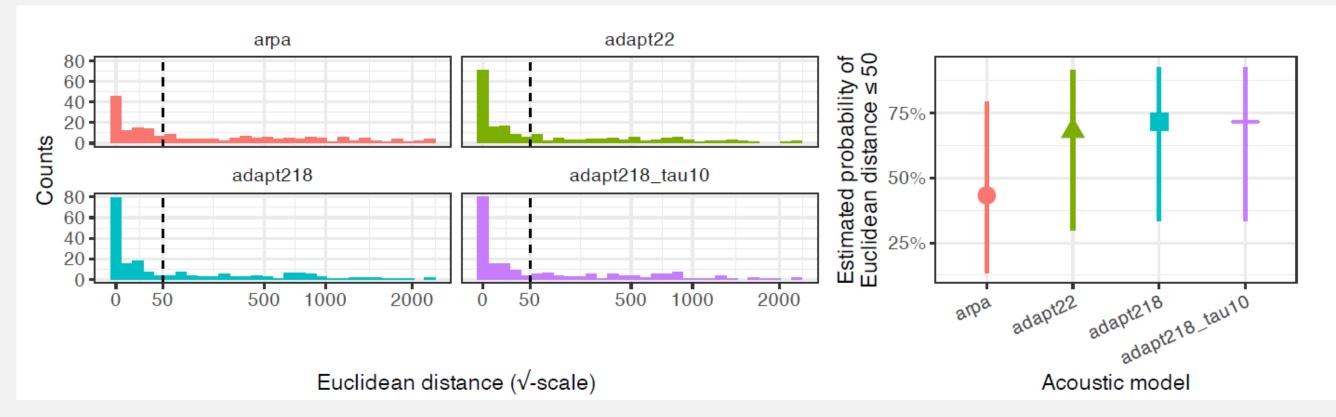

adapt218_tau10: 218 recordings / ~ 11 hours / 218 children, with -mapping-tau=10


Stage 1: adjusting WhisperX output

- ~ 150 hours manual adjustment of WhisperX output
- 73% recordings all speech transcribed
- adjustment needed: 70% 'a little' / 'no'; 24% 'some'; 5% 'a lot' / 1% 'all'

evaluation against manual segmentation

- 64 recordings / 3695 sec / 22 children
- Linear Mixed Modelling on log. durations / F1, F2
- manual vs 'raw' WhisperX vs adjusted WhisperX



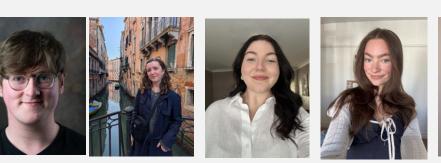
- > durations: raw < manual = adjusted
- > formants: raw / adjusted show more variable vowel space; vowel specific differences (especially /i/)

evaluation against manual segmentation

- 9 recordings / 418 sec / 9 children
- log. regr. on Eucl. Dist. from manual (≤ / > 50 Hz)
- arpa vs adapt22 vs adapt218 vs adapt218_tau10

- > all three adapted models perform better than english us_arpa
- > no improvement with greater speaker sample

Reflections


- both WhisperX and MFA disrupted by
 - extraneous noise (field recordings)
 - consistent child speech hyperarticulation
- adaptation of MFA model only needs small speaker sample (McAuliffe/Gunter LSA 2025)

references in paper

more about VARICS adapted models here

Thanks to the VARICS Correction Crew = Zara Johnson, Roxy Patton, Abbie Halls, Thea Foster, Sofia Moscato, Jack Louw, Ollie Gotts & Zack Barr; and to all schools, children & parents

